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Detecting Fractal Behavior  

Detecting fractal behavior over time is a sophisticated methodological issue for the following 

reasons. There are various mathematical approaches with their respective statistical 

parameters that measure fractality. For each parameter, numerous estimators of different 

quality are available and none of the procedures is clearly superior to the other [1; 2; 3]. 

Statistical characteristics of some non-fractal empirical time series can resemble fractal 

patterns, which complicates the identification. Therefore, the method that is chosen influences 

the research outcomes [4]. Detecting fractals in the cognitive processes confronts some 

additional challenges. Unlike biological or physical measurements, intentional activity is 

deliberate, and thus easy to manipulate. Hundreds of observations are necessary for detecting 

behavioral fractal patterns, hence it is possible that, due to fatigue or inability to fulfill the 

task properly, some reactions do not originate from the assumed cognitive mechanism but 

represent just random responses [5]. The present article is a brief commentary of the above 

mentioned topics. 

Fractal Parameters 

There are different mathematical devices to express self-similar power-low organization of 

fractal structures. Since fractal signals can be analyzed in both time and frequency domains, 

there exist different fractal parameters like the Hurst coefficient (H), the scaling exponent α, 

the power exponent β of the spectral analysis, or the differencing statistic d of the ARFIMA 

(Autoregressive Fractionally Integrated Moving Average) framework. It is crucial to 

understand that these parameters express exactly the same characteristics, which implies that 

each quantity can be converted to the other. For instance, interrelations between the 

parameters in stationary time series are: β=2d, H=(β+1)/2, and α=H=d+0.5. The expected 

theoretical parameter values of the 1/f noise are d=0.5, β=1, α=H=1 [4].  
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The Choice of the Measurement Method 

The choice of the measurement method determines the outcome of fractal analyses for the 

following reasons. Several estimators of fractal parameters are available (Table 1). Due to 

their complexity, it is not possible to compare them mathematically. Therefore their properties 

(e.g., bias, variability) are examined by means of a Monte Carlo method. Evaluation studies 

revealed that none of the procedures is superior to the other. The performance of the methods 

strongly depends on the aspects like the properties of the underlying process (e.g., stationary 

vs. non-stationary) or empirical context [2; 3; 6; 7]. For instance, Maximum Likelihood 

algorithms, the most accurate estimation techniques of the time domain, can handle only 

stationary data [1]. Most estimators from the frequency domain can be applied directly to 

stationary and non-stationary time series, however, they are less precise than  ML methods. 

Moreover, they tend to fail in empirical series combining fractal and non-fractal dynamics [3; 

5]. Hence, the most important finding from simulation studies is that fractal estimators can 

produce erroneous results under disadvantageous conditions. Further, estimates from the same 

time series obtained from different methods can vary markedly. Consequently, comparisons 

of results from studies in which fractality were determined with different measurement 

instruments are problematic and must be interpreted cautiously. 

The fact that knowledge about statistical properties of fractal estimators originate from 

Monte Carlo experiments underlines the importance of accurate data simulation. Obviously, 

an exact generation of fractal structures is a necessary condition for correct inference from 

Monte Carlo studies. There is some empirical evidence that even popular simulation 

algorithms of fractal noise like lmSimulate of R can be inaccurate, therefore data generation 

techniques must always be questioned and evaluated [5]. If possible, Monte Carlo results 

should be cross validated by employing several procedures. 
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Measurement Artifacts in Cognitive Performances 

Fractals have been observed in different domains of cognitive psychology including visual 

perception [8], controlled behavior [9], and automatic performances such as word naming or 

simple reaction times [10]. For instance, Gilden and his colleagues discovered 1/f noise in 

experiments including mental rotation, lexical decision, shape and color discrimination, or 

visual search [11; 12]. In this research paradigm, participants are required to complete 

hundreds of related tasks and press a key each time they detected a stimuli or a change. 

Response times between stimulus presentation and reaction serve as dependent measures. 

Fractal analyses are then applied to the response times data.  

 The described operationalization of cognitive performances makes a reliable 

identification of fractal structures especially challenging. The problem is that the dependent 

measure combines cognitive and motor components. Moreover, hundreds of trials are 

necessary to detect fractal organization of cognitive processes. Thus, participants of such 

experiments complete a vast number of monotonous tasks, which can be rather tiring. As a 

result stochastic trends in reaction times are possible due to fluctuations in attention or 

fatigue. Inability to fulfill the task properly can lead to random responses introducing white 

noise into the data. The interplay of these factors can imitate fractal structures. For instance, it 

is known that a combination of non-fractal signals like white noise and random walk can 

produce patterns similar to 1/ f noise [13]. Therefore, fractal methods used with these 

processes must be able to discern fractal behavior in the presence of non-fractal noise and to 

reliably distinguish between genuine fractals and fractal like signals.  

Implication for Applied Research 

The discussed topics implicate the following practical recommendations for applied 

researchers investigating fractal behavior in cognitive processes. First of all, it is important to 

know different fractal methods. Comparison of strengths and constraints of diverse algorithms 
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can help to identify the procedure that works best under specific research conditions. Due to 

the fact that no method outperforms the other in a majority of empirical situations, a strategic 

approach is necessary for proper measurement of fractal parameters. An example of such 

strategy and a detailed description of its implementation in applied settings are available in [3] 

and [4]. Finally, it is necessary to account for the deliberateness of cognitive activity. In 

contrast to biological measurements, cognitive responses are easy to manipulate. Monitoring 

of erroneous trials can help to determine whether observed reactions originate from the 

assumed problem solving mechanism or represent just random responses. 
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Table 1. Estimators of Fractal Parameters Freely Available in the Software Package R. 

Procedure Outputs estimates of Available Evaluated 

DFA α library fractal [2; 5;7] 

SSC α library fracdiff [5; 6] 

lowPSD β [4] [5; 6; 7] 

lowPSDwe β [4] [5; 6; 7] 

hurstSpec α library fractal [2; 3; 5] 

fdGPH 
d library fracdiff [2; 3; 5] 

fdSperio 
d library fracdiff [2; 3; 5] 

FDWhittle 
d library fractal [2; 3; 5] 

fracdiff 

Approximate ML 

d library fracdiff [2; 3; 5] 

 

 


