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Detecting Fractal Behavior

Detecting fractal behavior over time is a sophédgd methodological issue for the following
reasons. There are various mathematical approaehtds their respective statistical
parameters that measure fractality. For each pdaemmeumerous estimators of different
guality are available and none of the proceduresla@arly superior to the other [1; 2; 3].
Statistical characteristics of some non-fractal eicgd time series can resemble fractal
patterns, which complicates the identification. fEfere, the method that is chosen influences
the research outcomes [4]. Detecting fractals i@ tgnitive processes confronts some
additional challenges. Unlike biological or physicaeasurements, intentional activity is
deliberate, and thus easy to manipulate. Hundrédbservations are necessary for detecting
behavioral fractal patterns, hence it is possihbt,tdue to fatigue or inability to fulfill the
task properly, some reactions do not originate fittve assumed cognitive mechanism but
represent just random responses [5]. The prestaolkeais a brief commentary of the above
mentioned topics.

Fractal Parameters

There are different mathematical devices to expsedissimilar power-low organization of
fractal structures. Since fractal signals can bayaed in both time and frequency domains,
there exist different fractal parameters like therdtl coefficient ), the scaling exponerut,

the power exponerfi of the spectral analysis, or the differencingistiatd of the ARFIMA
(Autoregressive Fractionally Integrated Moving Aage) framework. It is crucial to
understand that these parameters express exagtgathe characteristics, which implies that
each quantity can be converted to the other. Fetamte, interrelations between the
parameters in stationary time series fe2d, H=(3+1)/2, anda=H=d+0.5. The expected

theoretical parameter values of théridise aral=0.5,3=1, a=H=1 [4].



The Choice of the Measurement Method

The choice of the measurement method determinesuteme of fractal analyses for the
following reasons. Several estimators of fractalapeeters are available (Table 1). Due to
their complexity, it is not possible to comparerthmathematically. Therefore their properties
(e.g., bias, variability) are examined by means dflonte Carlo method. Evaluation studies
revealed that none of the procedures is superitire@ther. The performance of the methods
strongly depends on the aspects like the propesfidise underlying process (e.g., stationary
VS. non-stationary) or empirical context [2; 3; &; For instance, Maximum Likelihood
algorithms, the most accurate estimation techniqpfehe time domain, can handle only
stationary data [1]. Most estimators from the fremry domain can be applied directly to
stationary and non-stationary time series, howetey are less precise than ML methods.
Moreover, they tend to fail in empirical series dmning fractal and non-fractal dynamics [3;
5]. Hence, the most important finding from simwatistudies is that fractal estimators can
produce erroneous results under disadvantageoutions. Further, estimates from the same
time series obtained from different methods cary vaarkedly. Consequently, comparisons
of results from studies in which fractality weretetenined with different measurement
instruments are problematic and must be interpregetiously.

The fact that knowledge about statistical propsrtiefractal estimators originate from
Monte Carlo experiments underlines the importarfcacourate data simulation. Obviously,
an exact generation of fractal structures is a $srg condition for correct inference from
Monte Carlo studies. There is some empirical ewdethat even popular simulation
algorithms of fractal noise likemS mulate of R can be inaccurate, therefore data generation
techniqgues must always be questioned and evalyajedf possible, Monte Carlo results

should be cross validated by employing severalguores.



Measurement Artifacts in Cognitive Performances

Fractals have been observed in different domainsoghitive psychology including visual
perception [8], controlled behavior [9], and auttim@erformances such as word naming or
simple reaction times [10]. For instance, Gildemn &is colleagues discoveredf hise in
experiments including mental rotation, lexical demn, shape and color discrimination, or
visual search [11; 12]. In this research paradigm@rticipants are required to complete
hundreds of related tasks and press a key eachthieyedetected a stimuli or a change.
Response times between stimulus presentation aaalioe serve as dependent measures.
Fractal analyses are then applied to the respanss tlata.

The described operationalization of cognitive perfances makes a reliable
identification of fractal structures especially bbaging. The problem is that the dependent
measure combines cognitive and motor componentstedwer, hundreds of trials are
necessary to detect fractal organization of cogmiprocesses. Thus, participants of such
experiments complete a vast number of monotonals tavhich can be rather tiring. As a
result stochastic trends in reaction times are iplessiue to fluctuations in attention or
fatigue. Inability to fulfill the task properly caead to random responses introducing white
noise into the data. The interplay of these faatarsimitate fractal structures. For instance, it
is known that a combination of non-fractal signite white noise and random walk can
produce patterns similar to I/ noise [13]. Therefore, fractal methods used whbkse
processes must be able to discern fractal behavithre presence of non-fractal noise and to
reliably distinguish between genuine fractals aiadthl like signals.

Implication for Applied Research

The discussed topics implicate the following preadti recommendations for applied
researchers investigating fractal behavior in cidgmiprocesses. First of all, it is important to

know different fractal methods. Comparison of sgteés and constraints of diverse algorithms



can help to identify the procedure that works hester specific research conditions. Due to
the fact that no method outperforms the other magority of empirical situations, a strategic
approach is necessary for proper measurement ciafrparameters. An example of such
strategy and a detailed description of its impletagon in applied settings are available in [3]
and [4]. Finally, it is necessary to account foe ttheliberateness of cognitive activity. In
contrast to biological measurements, cognitive asps are easy to manipulate. Monitoring
of erroneous trials can help to determine whetHeseoved reactions originate from the

assumed problem solving mechanism or representgndbm responses.
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Table 1.Estimators of Fractal Parameters Freely Available in the Software Package R.

Procedure Outputs estimates of Available Evaluated
DFA a library fractal [2; 5;7]

SSC a library fracdiff [5; 6]
YPSD B [4] [5; 6; 7]

P SDye B [4] [5; 6; 7]
hurstSpec a library fractal [2; 3; 5]
fdGPH d library fracdiff [2; 3; 5]
fdSperio d library fracdiff [2; 3; 5]
EDWhittle d library fractal [2; 3; 5]
fracdiff d library fracdiff [2; 3; 5]

Approximate ML




